RANDOM WALK IN A SPARSE RANDOM ENVIRONMENT

PIOTR DYSZEWSKI (TECHNISCHE UNIVERSITÄT MÜNCHEN)

We'll investigate a nearest neighbour random walk $(X_n)_n$ on the set of integers with random transition probabilities. The random walk moves symmetrically with exception of some random, marked sites, where a random drift is imposed. We assume that the distance between the marked sites are independent copies of a given random variable $\xi \in \mathbb{N}$ and that at each marked site the random walker jumps to the right with probability being an independent copy of a given random variable $\lambda \in (0, 1)$.

If the distance between the marked sites ξ is of finite mean, the asymptotic behaviour of the random walker resembles that in the classical case [3]. Roughly speaking

 $\frac{X_n}{n^{\alpha}}$

converges in distribution to a law related to a stable distribution [4, 2], where the value of the parameter $\alpha \in (0, 1]$ as well as the parameter of the stable distribution are determined by the distributions of ξ and λ .

The complementary case, when distance between the marked sites is of infinite mean, reveals new behaviour. Here $(X_n)_n$ scales like a simple symmetric random walk, that is

converges in distribution. However the corresponding limit distribution is non-stable [1].

References

- D. Buraczewski, P. Dyszewski, A. Iksanov and A. Marynych, Random walks in a strongly sparse random environment, Stochastic Process. Appl, 130(7), 3990-4027, 2020
- [2] D. Buraczewski, P. Dyszewski, A. Iksanov, A. Marynych and A. Roitershtein, Random walks in a moderately sparse random environment, Electron. J. Probab. 24, paper no. 69, 44 pp. 2019
- [3] H. Kesten, M. V. Kozlov and F. Spitzer, A limit law for random walk in a random environment, Compositio Math. 30:145-168, 1975.
- [4] A. Matzavinos, A. Roitershtein and Y. Seol, Random walks in a sparse random environment, Electron. J. Probab. 21, paper no. 72, 20 pp. 2016.

$\frac{X_n}{\sqrt{n}}$